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If the ground state wave-function 6gr is written as ~0gr = ~o + X, with X as the 
correlation part satisfying (~0lX)= 0, and X expressed as an expansion in 
terms of pair, pair-pair etc. cluster functions, then the expectation value of 
the energy E = (~gr]Hl~lgr)/(~grl~tgr) has the property that the normalization 
term in the denominator completely cancels the unlinked part of the 
numerator, as noted by Sinanoglu. We use Cizek's coupled-pair ansatz 
4% =exp (T2)~0 for transcribing Sinanoglu's expansion in a many-body 
language to study the behaviour of the size-consistent (linked) energy func- 
tional thus generated. For calculating the matrix-elements of the cluster 
components of T, we use two recipes: (1) a variational determination of the 
cluster components using Euler's principle for the energy functional akin in 
spirit to the Varied Portion Approach (VPA) of Sinanoglu and (ii) a nonvari- 
ational determination of the cluster components using the conventional 
coupled-cluster theory. Results are presented for model test systems and are 
compared with variational CI and nonvariational coupled-cluster values. It 
has been observed that the values obtained from the size-consistent energy 
functional from the cluster components obtained from methods (i) and (ii) 
are quite close and both compare well with the nonvariational coupled-cluster 
results. Some useful simplifications afforded by the VPA are also indicated. 
A brief perspective of the method vis-a-vis other related theories is also given. 
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1. Introduction 

The many electron correlation problem has remained for a long time a field of 
major interest in Quantum Chemistry. Historically, the Configuration Interaction 
(CI) procedure is the oldest and is also the most widely used technique - 
presumably because of its simple algebraic structure. This has also a serious 
drawback, however. The CI gives no clue to the expected physically dominant 
configurations that need enter the CI expansion. Without such a physical recipe, 
the CI calculations can not take into account the most important aspects of 
electron correlations in a compact CI expansion and thus becomes rapidly 
prohibitive for an accurate calculation of even modest sized systems. Sinanoglu 
[1] first pointed out that pair correlations and pair-pair correlations are the 
dominant modes of correlation in a closed-shell electronic system provided one 
starts out with Hartree-Fock (HF) orbitals, and developed a Many Electron 
Theory (MET) building on this idea. According to Sinanoglu, the pair correlation 
effects are adequately taken care of by including doubly excited configurations. 
The pair-pair correlations enter through the quadruply excited configurations 
but an essential simplification brought out by the MET is that the coefficients 
of the quadruply excited configurations can be well approximated as sum of 
products of coefficients for the various appropriate doubly excited configurations. 
MET emphasises this dominance of the pair cluster and its unlinked product 
counterparts and asserts that orbital polarization (entering through single excita- 
tions), three-body correlation (through triple excitations) and their unlinked 
cluster contributions are not significant. Sinanoglu [1] advocated a variational 
recipe to calculate the pair cluster functions under various decoupling approxima- 
tions starting from the full variational energy functional. Writing the exact ground 
state function r as a sum of H-F component ~0 and the correlation part X, the 
exact energy E is formally given by 

E - <~,lHId,~,) = / ~ H ~  2(~olHIx>+(xlH --EHFIx) (1) 
(r 1 + (x Ix) 

using the convention for intermediate normalization. In MET, the function ~( is 
written as [1] 

x=A[ l~(123""N) ~ Lr#+�89 
,>J (6) 

A N U~j Ut,, ] - - - - + . . "  
i>j (if) (kl) 
k>l  

(q)~(kl) 

(2) 

and this expansion substituted into the Eq. (1) gives the starting master equation 
for MET. We have used Sinanoglu's standard notation for expressing X. If X is 
truncated after the first-term, and the approximate functional is varied, then we 
have precisely a "doubles CI" theory for correlation - now a routine technique. 
A more useful variant of this full (Raleigh-Ritz) variational principle has been 
extensively discussed by Sinanoglu which he has termed as the "Varied Portion 
Approach (VPA)" [2]. This is a variational principle for a principal component 
of the functional in Eq. (1) (thus also termed a "subvariational principle") which 
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leads to Euler's equations of simpler structure. Thus, by varying contributions 
from each Oij at a time, one generates equations for each Uii and consequently 
gets a decoupled pair MET. Sinanoglu and Goscinski also demonstrated that 
the use of VPA to the numerator only of Eq. (1) leads to a lower bound equation 
for pair correlations [3]. One conspicuous feature of the functional (1) is the 
coupling of various clusters U~j in the denominator through the normalisation 
term (I+(XlX)). It was emphasised by Sinanoglu [2] that this coupling is not 
physical but is merely an artifact originating through truncation of Eq. (2) after 
a finite product (usually after the first term, as in a CI). If all unlinked clusters 
are kept in X, then the denominator gets completely cancelled with a factor 
originating from the numerator. It is now widely accepted that the chief trouble 
with a CI type of approach including fixed degree of excitation is the lack of 
size consistency (as manifested in the incomplete cancellation of the denominator) 
[4, 5]. Only the full cluster expansion leads to a size-consistent result through 
complete cancellation of the denominator. 

We explore in this paper the property of the energy functional Eq. (1) where 
the unphysical coupling through the denominator is eliminated by utilising the 
full unlinked cluster expansion (Eq. (2)). 

It is well known that ~gr in MET may be compactly written in the occupation 
number representation as 

~Pgr = exp (T)~o (3) 

with T approximated as T2. This kind of exponential ansatz was first used in 
nuclear physics [6] and its potential importance in atomic and molecular physics 
was also soon noted [4, 5, 7]. Subsequently there has been a wide spread use of 
this "coupled cluster" ansatz [5-13]. The major thrusts in the various develop- 
ments have been (a) a nonvariational approach using the method of moments 
and (b) use of a variational principle to the functional Eq. (1) where the complete 
cancellation of the denominator is not attempted [12]. The non-variational 
approach has no denominators and is consequently size consistent and is the 
natural extension and generalisation of the manybody perturbation theories 
developed somewhat earlier [15]. The methods (b) are size inconsistent for an 
approximate 4'gr due to incomplete cancellation of the denominator. Taking cue 
from Sinanoglu's theory, we substitute the expression Eq. (3) in Eq. (1) and 
generate the size consistent energy functional through the cancellation of the 
denominator. Although this formal cancellation of the denominator for a general 
T has been known for some years [1, 7, 10, 14], the behaviour of the size- 
consistent energy functional under various choices for the cluster-components 
of T and truncation schemes have not been explored so far. We want to keep 
on record a preliminary study in that direction using some model test problems. 
Specifically we shall show the following: (a) Euler's principle to the size-consistent 
energy functional for the ground state can be used to determine the cluster 
components and hence a size-consistent energy for the ground state in excellent 
agreement with the coupled-cluster nonvariational results of Cizek; (b) if the 
energy functional is truncated after rnth total power of T and T + and the resulting 
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expression varied to solve for T, then the calculation of the terms involving mth 
total power of T and T § can be avoided altogether in the subsequent energy 
calculation. Thus, for an energy functional retaining up to quadratic power of 
T and T +, the variational result contains up to linear terms only and is identical 
with the result from the linearised nonvariational theory, (c) substitution of the 
values of cluster components obtained from non-variational theory in the size- 
consistent energy functional leads to a similar value for energy but the advantage 
for the variational method under (b) above does not exist; (d) there is a loss of 
upper bound property of the energy functional for a truncated calculation which 
is, however, not very serious. The variational principle for the truncated size- 
consistent energy functional is thus more in the spirit of VPA [1] than the 
Raleigh-Ritz principle. 

2. Calculation of the Energy Functional 

We write the ground state using the coupled cluster ansatz: 

r = exp (T)qbo, (4) 

with T involving hole-particle excitations only, Cbo, is the Hartree-Fock function. 
It may be noted that for closed shell systems, the operator exp (T) is in normal 
order: N[exp (T)] = exp (T), and thus a simple exp (T) wave-operator suffices. 
It would, however, be useful to keep in mind that the exp (T) is a normally 
ordered operator. The linked nature of the energy functional 

E = (qb~ exp (T+)H exp (T)lqb0) 
(qbo[ exp (T +) exp (T)[~o) (5) 

has been noted earlier by several workers in various context [1, 7, 10, 14]. The 
proof becomes rather simple if both the numerator and the denominator in (5) 
are expanded in the usual way using the generalised Wick's theorem (GWT) 
[5], and the set of closed connected diagrams containing the hamiltonian vertex 
is factored out from the closed normalisation diagrams containing T and T § 
vertices contracted together. The normalisation diagrams, taken to all orders, 
cancel the denominator making the resultant expression linked and, therefore, 
size-consistent. 

E = (qbo]N[exp (T+)H exp (T)]]qb0),,Linked,, (6) 

where N denotes normal ordering, and "Linked" stands for linked closed 
diagrams. The proof is reminiscent of the linked-cluster theorem for closed-shell 
many-body perturbation theory [ 15]. Fig. 1 depicts the factorisation schematically 
and a set of typical diagrams appearing in Fig. 1 is displayed in Fig. 2. 

We want to study the property of the energy functional (6) along two lines. The 
first of these would be to make Eq. (6) stationary with respect to the cluster 
components and then calculate the energy from Eq. (6). E is, however, an infinite 
degree polynormal in T and T § and thus would require truncation at a finite 
order for any practicable calculation. In the spirit of the analysis made by 
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Fig. 1. Schematic representations of LCT. Square 
hatched box represents linked part of energy 
functional. Circular hatched box represents the 
normalization term. The disconnected top portion 
of the diagram of Fig. 1 is a member of the nor- 
malization term, and the bottom portion goes into 
the linked part of E 

E m N - -  

Fig. 2. Some representative diagrams of energy func- 
tional. The successive three vertices from the left are 
from T § The open circle is V. The rest are T vertices 

Sinanoglu [1] we approximate  T as T2 [7, 8], and truncate the energy functional 
(Eq. 6) after cubic total power of T and T § This implies that pair, pair-pair  
and a large part  of pair-triple correlations are taken into account. These are 
expected to be by far the most  dominant  terms of pair-correlation theories. We 
construct the equations diagrammatically: all the linked topologically distinct 
closed diagrams are considered which have at most three T and T § vertices. 
The spin integration is carried out graphically by the graphical Clebsch-Gordan  
coupling method [16-18]. We write a matr ix-element  of the form 

P q t2 as follows: 
13"1 0 " 2  0"3  0 " 4  a 

P q t2 = Z {pq]t2laN}, (7) 
0"1 0"2 0-3 0-4 a S ,M 1 0"2 m m 0"3 0"4 

where o-i's are the spin-indices. Using the inverse t ransformation of Eq. (7), we 
can show that, for the spin-adapted matr ix-elements  {pq[t2la/3},, we have the 
relation 

{pq ltzlO~/3}s = (pq Itzlo~/3 ) + ( -  1)S(pq ttz]/3a ) (8) 

for p, q particles and a, /3 holes, with S = 0 and 1. (pq]tzlafl) etc. are the spin-free 
Goldstone 7'2 matrix-elements.  

Up to the cubic powers of T, the spin-reduction scheme gives rise mostly to 
triads, and, in the most  involved cases (i.e. those involving T +2 and T and its 
hermitian conjugate) products of two 9 - / " s .  The non-linear equations may thus 
be formed directly in terms of the spin-adapted T2 matrix-elements  {pq[t2[a/3}s. 
Collecting all the T matrix elements in a column T and T+'s  in a row T § E 
may be compactly written as 

E = ERr: + [T+A 1,o + AOAT + T+A 1,1T 

+ T + |  T+A2aT + T+A 1'2T| T] (9) 
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where A " ' "  is the matrix of coefficients associated with mth and nth power  of 
T + and T respectively. For the approximation T ~ T2, the coefficients A 2'~ and 
A ~ are zero as it is not possible to draw linked closed diagrams with a 
hamiltonian vertex and two T + or two T on either side of H.  The energy E 
being a number,  each term in the square bracket  of Eq. (9) contains a complete 
sum over all the indices. To be specific, and to give a more  elaborate illustration 
of the matrix elements of Am'", we write out in long hand the T + |  
term below: 

,.-r, + ,-/-, + A  2 ,1  or, T + |  = Y 1 i  l j  ~ij, k*k (10) 
qk 

Ti is the ith e lement  of the row matrix T § and T~T~. should be interpreted as 
the (i,j) element  of a row matrix T + |  § Indices i,j, k etc. are the composite  
indices for possible combinations of {pqlt2lotfl}s, with p, q particles and or,/3 as 
holes; S --- 0, 1. F rom the hermitian nature of the energy expression (6), it follows 
that (Am'") § = A ~'m. The detailed expression for Eq. (9) is given in Appendix  1. 
In Appendix 2, we show using one of the more involved cases, how the spin- 
reduction is effected. 

The equations determining T ' s  are obtained by differentiating E in Eq. (9) with 
respect to all the distinct {pq ]t21afl}~ matrix-elements:  

OE 
= 0 ( l l a )  

O{ pq l t 21o4~ }s 

and 

0E 
= 0  f o r a l l p > - q , a > - B ; s = O ,  1. ( l l b )  

O{e~fl lt~ ] pq }s 

The Eqs. (11) are coupled simultaneous quadratic equations in the matrix- 
t + elements {pq]talafl}s and {c~t~ I 2 [pq}s. As {pqlt2[afl}s = {aft It~ [Pq}s, it is evident 

that the sets (11a) and (11b) are hermitian conjugates of each other and only 
one set needs to be solved with matr ix-elements  {afl[t~lpq}~ equated as 

{pqlt2lotfl }s. 

We now demonstra te  an interesting proper ty  of the variational energy functional: 
if E is truncated after K t h  power of T and T § and T ' s  are determined 
variationally, then one may avoid calculation of the K t h  power terms in E to 
get the energy. This seems to be computationally advantageous,  for the number  
of terms tend to increase rapidly with powers of T. 

The proof  is straightfoward. We write the correlation energy Ec as 

Ec = E - E H F  = ~ T + | 1 7 4  �9 �9 �9 m times A m'- 
r~t,n 

m + n  = I , K  

T | T |  �9 �9 n times = 32 X m,n 

m + n = l , K  

(12) 
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E 
m , n  

m + n  = l , K  

The quantity X m'n is a homogeneous polynomial of the matrix-elements of T § 
and T of degree m and n respectively. The variational equations for T and T § 
are of the form: 

aEc aS  r'~'~ 
aT + = E aT + - 0  (13a) 

m,n 
r a + n = l , K  

aEc aX m'n 
= E = 0 (13b) 

aT, ,~,. aT~ 
m + n = l , K  

The set (13b) is hermitian conjugate of the set (13a). Multiplying Eq. (13a) by 
T, .+, Eq. (13b) by T` and summing over i, we obtain 

OS~, n 
E T[  = 0 (14a) 
i aT[ 

a S  m,rl  
Y~ ~ - - ~ -  T` = 0  (14b) 

m,n 
m + n = l , g  

Using Euler's theorem for homogeneous polynomials: 

aX ~'~ Xm,~ 
T + aT + =rn.  

X ''n xm,  n 

in Eqs. (14a) and (14b), and adding them together, we have 

Y. (m+n)Xm'n=O 
tn, rt 

m §  

which may be rewritten as 

E (rn+n)Xm'n+K ~ X K . . . .  = 0  
m , n  rn = 0 , K  

r n + n = l , K - 1  

(15a) 

(15b) 

(16) 

(17) 

Using Eq. (17), we may eliminate the (m +n)  = K  terms in Eq. (12) in favour 
of the lower order quantities: 

g - r  
Ec = E E x ' -m ' '  (18) 

r = l , K - 1  K m =O,r  

An interesting side-line of the above observation is that, up to quadratic terms 
in E, Ec would be given by 

E~ 2) = �89176 + T+A 1'~ = A ~  (19) 

where (.4 1.o)+ = AO, X has been used. This is essentially the result of the linearised 
nonvariational coupled-cluster theory of Cizek [7]. Recently it has been shown 
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to possess an interesting bound property [19]. No such simple correspondence 
with the nonvariational coupled-cluster theory could be discerned, however, 
after the cubic terms are brought in. 

As the second line of development, we have also evaluated the energy functional 
by substituting the value of T matrix-elements obtained from the nonvariational 
coupled-cluster theory in Eq. (6) to get an idea regarding how close the correspon- 
dence is between the variational and the nonvariational results. As for the 
nonvariational T's and Eqs. (13a) and (13b) do not hold, we no longer have the 
simpler results, Eq. 18. Thus, the use of VPA simplifies the resulting expression 
for the size-consistent energy functional. 

3. Results and Discussion 

The formalisms presented here have been applied to a set of heterocyclic 
compounds in a PPP framework. The results for the correlation energy up to 
cubic total power of T + and T are shown in Table 1. The Table contains (1) 
variational results retaining up to cubic and quadratic total power of T + and T 
(the latter is equivalent to the linearised non-variational coupled-cluster method) 
(2) results from a calculation in which non-linear nonvariational T matrix 
elements from Cizek's C-C theory are simply substituted in the energy functional 
(Eq. (6)) (3) results from nonlinear non-variational coupled-cluster method for 
comparison (4) results from a CI containing all double excitation (these essentially 
involve the same number of variable parameters as in (1) and (2); and (5) full 
CI results for comparison. A perusal of the Table shows that the variational 
C-C theory up to cubic terms provides results near the values generated by (2) 
and also both are rather close to the non-variational non-linear results (3). 
Computationally, the variational method and the approach (2) are rather compar- 
able: The equations determining T would have some additional terms in vari- 
ational method, but in energy the third order terms would not have to be explicitly 
computed - as implied by Eq. (18), a simplification not possible for (2) where 
T's have been computed by a non-variational procedure. All the results are 
substantially different from the size-inconsistent "doubles only" CI involving 
the same number of parameters. The results are often slightly lower than the 
full CI values indicating that truncation of the linked energy functional leads to 
a loss of upper bound property. This was first observed in nuclear calculations 
using the cluster expansion method using Jastrow function and is known as the 
"Energy difficulty" [20]. The results indicate that this, however, may not be 
serious. Formally speaking, the loss of the bound property stems essentially from 
the fact that the truncated series for E, written as a single power series of T, 
does not correspond to an expectation value like quantity having polynomials 
of some fixed finite degree appearing in numerator and denominator. If, however, 
the dominant terms contributing to the energy functional are retained in the 
truncated series, the energy thus calculated would be very close to the exact 
energy and thus would very nearly be stationary. It is thus meaningful to postulate 
an Euler principle for the truncated functional. Sinanoglu has also advocated 
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the same recipe in connection with a variational determination of the pair- 
function appearing in the theory of electron correlation which he has termed 
the "varied portion approach" [2]. Closeness of our results with the full CI 
values indicates that the dominant terms have been included in our truncated 
energy functional. As the terms which would have restored the upper bound 
property appear in fourth order and beyond in perturbation theory, the dis- 
crepancy should not be very serious [23]. 

In view of the lack of a consistent wave-function for a truncated energy series 
of Eq. (6), it is not immediately apparent that the resulting one particle density 
preserves the particle number. This, however, may be proved in the following 
manner. From Eq. (6), it follows that the one particle density is of the form 

P l  = P l H F  + Plcorr 

where pl . . . .  is the correlation component coming from T*/T containing terms. 
Noting that trplHv=N, the particle number, we have to show that trplcorr = O. 
The component Y~ [pl .... ]~,, for the holes in the trace are the coefficients of the 
terms containing T+/T vertices sandwiching the bare one-body operators h~ .  
Its value is numerically equal to all closed connected diagrams containing T+/T 
vertices, but with an additional negative sign, because insertion of an h~  vertex 
increases hole lines by one. The component Y.p [pl .... ]pp, however, has exactly 
the value of the T §  closed diagrams, because insertion of a h,, vertex leaves 
number of hole lines unaltered. The total trace of pl .... thus becomes zero due 
to mutual cancellation. 

To study the effect of truncation of the rank of T we have done another set of 
calculations including 7"1 operators as well on some of the systems. These results 
are summarised in Table 2. As may be seen that, as expected, while the correction 
is in the proper direction the effect of T1 is not significant. 

We conclude the paper with a brief discussion concerning the relation of the 
variational formalism with other works. Kutzelnigg [21] has suggested the use 
of a unitary wave-operator of the form exp (T - T§ Such a waveoperator would, 
by Housdoi-ff formula lead to a linked cluster expansion automatically [22]. If 
his T is chosen to be only of hole-particle excitation type, then his multi- 
commutator expansion would be structurally similar to ours, though the 
wavefunction and the consequent interpretations would be very different. Kutzel- 
nigg's wave-function has a normalisation correction to the coefficient of qb0 while 

Table 2. Effect of truncation in the rank of T on correlation energy on same 

heterocyclic compounds in PPP framework 

Variational results with 

Molecule T = 7'2 T = T1 + T2 FCI 

Pyrazine 1.15116 ev 1.14389 ev 1.0835 ev 
Tetrazine 1.29028 ev 1.27883 ev 1.2323 ev 

Pyrimidine 1.13595 ev 1.11304 ev 1.0764 ev 
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our ansatz exp (T)4~0 implies an "intermediate normalization" convention: 

{qbo I exp (T)]qb0)= 1 (20) 

reminiscent of perturbation theory. It is worth noting here that the unitary 
[21, 22] ansatz would also entail Emery  difficulty due to truncation. Nakatsuji 's 
[12] variational formalism within the coupled-cluster framework involves both 
the numerator  and denominator and thus lacks size-consistency. Paldus et al. 
[10] have developed a mixed variational procedure to study the energy differen- 
ces. Starting from an exact wavefunction obtained from non-variational coupled- 
cluster theory, they introduce a composite operator  S exp (T) to create the ion 
from ~b0 and vary the energy functional with respect to the S matrix elements. 
Paldus et al. have proved a linked cluster theorem containing both numerator  
and denominator and it thus has a totally different algebraic structure. 

Generalization of the linked-cluster theorem for open-shells using an operator  
of the form N[exp  (T)] acting on a set of degenerate reference functions is under 
way [24]. These will be communicated in due course. 
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Appendix 1 

The energy expression given in Eq. (15) symbolically in matrix form may be 
written as follows: 
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o t ,B ,p ,q  

o- 
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o- 

E 
a , ~ , % , 3 ,  

p ,q , r ,5  
t~ 

{pq Itzlo~fl}~{rs [tely6}~{rs It21afl}~{y6 Iv ]pq }~ (2o- + 1) 

{pq ]t2]a[3}~,{rslt21yS}~{pq[t21"yS}~{rslv ]afl},,(2o- + 1) 



534 S. Pal et al. 
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The indices a, fl etc. are hole orbitals, p, q etc. are particle orbitals; o-i, ~rj are 

coupled spins and e are g - j  symbols, f is the H - F  operator and v 

h 
is the two-body repulsion operator. 

Appendix 2 

We shall briefly indicate here the spin-adaption procedure of a rather involved 
third order term containing T + |  T+A2'IT. We take both the T matrix-elements 
and the two-body matrix-elements of the Hamiltonian H to be antisymmetrized 
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Fig. 3. Spin reduction of third order terms leading to two 9-J symbols 

(i.e. of Hugenholtz-type),  so that the so called "direct"  and "exchange"  terms 
are grouped together - leading to an effective reduction of the number  of 
diagrams. The spin reduction procedure would, however,  lead to a higher rank 
n - i  symbol in such a choice. It appears that a diagram of m total vertices may 
in the most  involved case yield a 3 m - / "  symbol. In the particular illustrative 
example,  shown in Fig. 3 a 12-/" symbol appears which we break down into a 
sum of products of two 9-/" symbols for a convenient evaluation. 
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